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Cosmology via Metric-Independent
Volume-Form Dynamics

Eduardo Guendelman and Emil Nissimov and Svetlana Pacheva

Abstract The method of non-Riemannian volume-forms (metric-independent co-
variant integration measure densities on the spacetime manifold) is applied to con-
struct a unified model of dynamical dark energy plus dark matter as a dust fluid
resulting from a hidden Noether symmetry of the pertinent scalar field Lagrangian.
Canonical Hamiltonian treatment and Wheeler-DeWitt quantization of the latter
model are briefly discussed.

1 Introduction

Alternative spacetime volume-forms (generally-covariant integration measure den-
sities) independent on the Riemannian metric on the pertinent spacetime man-
ifold have profound impact in any field theory models with general coordinate
reparametrization invariance, such as general relativityand its extensions, strings
and (higher-dimensional) membranes [12, 10, 11, 14].

The principal idea is to replace or employ alongside the standard Riemannian
integration density given by

√−g (square root of the determinantg = det‖gµν‖
of the Riemannian metricgµν ) one or more non-Riemannian (metric-independent)
covariant integration measure densities defined in terms ofdual field-strengthsΦ(B)
of auxiliary maximal rank antisymmetric tensor gauge fieldsBµνλ :

Eduardo Guendelman
Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva, Israel e-mail: guen-
del@bgu.ac.il

Emil Nissimov
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bul-
garia e-mail: nissimov@inrne.bas.bg

Svetlana Pacheva
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bul-
garia e-mail: svetlana@inrne.bas.bg

1

http://arxiv.org/abs/1509.01512v1


2 Eduardo Guendelman and Emil Nissimov and Svetlana Pacheva

Φ(B) =
1
3!

εµνκλ ∂µBνκλ , (1)

The corresponding non-Riemannian-modified-measure gravity-matter models were
called “two-measure (gravity) theories” and the associated auxiliary tensor gauge
fieldsBµνλ – “measure gauge fields”.

The auxiliary “measure” gauge fields trigger a number of physically interesting
phenomena:

• The equations of motion w.r.t.Bµνλ produce dynamical constraints involvingar-
bitrary integration constants, where one of the latteralwaysacquires the meaning
of adynamically generated cosmological constant.

• Employing the canonical Hamiltonian formalism for Dirac-constrained systems
we find thatBµνλ are in fact almost pure gauge degrees of freedom except for
the above mentioned arbitrary integration constants whichare identified with the
conserved Dirac-constrained canonical momenta conjugated to the “magnetic”
components(Bi jk) of the “measure” gauge fields.

• Upon applying the non-Riemannian volume-form formalism tominimal N = 1
supergravity the dynamically generated cosmological constant triggers sponta-
neous supersymmetry breaking and mass generation for the gravitino (supersym-
metric Brout-Englert-Higgs effect) [16]. Applying the same formalism to anti-de
Sitter supergravity allows to produce simultaneously a very large physical grav-
itino mass and a very smallpositiveobservable cosmological constant [16] in
accordance with modern cosmological scenarios for slowly expanding universe
of the present epoch [21, 20, 22].

• Employing two independent non-Riemannian volume-forms like (1) in general-
ized gravity-gauge+scalar-field models [17], thanks to theappearance of several
arbitrary integration constants through the equations of motion w.r.t. the “mea-
sure” gauge fields, we obtain in the physical “Einstein-frame” a remarkable ef-
fective scalar potential with two infinitely large flat regions (for large negative
and large positive values of the scalar fieldϕ) with vastly different scales appro-
priate for a unified description of both the early and late universe’ evolution. An-
other remarkable feature is the existence of a stable initial phase ofnon-singular
universe creation preceding the inflationary phase – stable“emergent universe”
without “Big-Bang” [17].

As a specific illustration of the usefulness of the non-Riemannian volume-form
method and extending the study in [15, 1] we discuss a modifiedgravity+single-
scalar-field model where the scalar Lagrangian couples symmetrically both to
the standard Riemannian volume-form given by

√−g as well as to another non-
Riemannian volume-form (1). The pertinent scalar field dynamics provides a uni-
fied description of both dark energy via dynamical generation of a cosmological
constant, and dark matter as a “dust” fluid with geodesic flow as a result of a hidden
Noether symmetry. Further, we briefly consider the canonical Hamiltonian treat-
ment and the Wheeler-DeWitt quantization of the above unified dark energy plus
dust fluid dark matter model.
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2 Dark Energy and Dust Fluid Dark Matter via
Non-Riemannian Volume-Form Dynamics

We will consider the following non-conventional gravity+scalar-field action – a
particular case of the general class of the “two-measure” gravity-matter theories
[12, 10, 11] (for simplicity we use units with the Newton constantGN = 1/16π):

S=

∫
d4x

√−gR+

∫
d4x

(√−g+Φ(B)
)
L(ϕ ,X) . (2)

HereΦ(B) is as in (1) andL(ϕ ,X) is general-coordinate invariant Lagrangian of a
single scalar fieldϕ(x) of a generic “k-essence” form [8, 2] (i.e., a nonlinear (in gen-
eral) function of the scalar kinetic termX): L(ϕ ,X) =∑N

n=1An(ϕ)Xn−V(ϕ) , X ≡
− 1

2gµν∂µϕ∂ν ϕ . The energy-monentum tensor corresponding to (2) reads:

Tµν = gµν L(ϕ ,X)+
(

1+
Φ(B)√−g

) ∂L
∂X

∂µϕ ∂νϕ . (3)

The essential new feature is the dynamical constraint on thescalar Lagrangian,
which results from the equation of motion w.r.t. “measure” gauge fieldBµνλ :

∂µL(ϕ ,X) = 0 −→ L(ϕ ,X) =−2M = const, (4)

whereM is anarbitrary integration constant. We will take M > 0 in view of its
interpretation as adynamically generated cosmological constant(see (7) below).

A remarkable property of the scalar field action in (2) is the presence of a hidden
Noether symmetry of the latter under the nonlinear transformations:

δε ϕ = ε
√

X , δε gµν = 0 , δεBµνλ =−ε
1

2
√

X
εµνλ κgκρ ∂ρ ϕ

(
Φ(B)+

√−g
)
. (5)

The standard Noether procedure yields the conserved current:

∇µJµ = 0 , Jµ ≡
(

1+
Φ(B)√−g

)√
2Xgµν∂νϕ

∂L
∂X

. (6)

Let us stress that the existence of the hidden symmetry (5) ofthe action (2)does not
depend on the specific form of the scalar field Lagrangian.

Now, Tµν (3) andJµ (6) can be rewritten in a relativistic hydrodynamical form
(taking into account (4)):

Tµν = ρ0uµuν −2Mgµν , Jµ = ρ0uµ , (7)

where:

ρ0 ≡
(

1+
Φ(B)√−g

)
2X

∂L
∂X

, uµ ≡ ∂µϕ√
2X

( uµuµ =−1 ) . (8)
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For the pressurep and energy densityρ we obtain:

p=−2M = const , ρ = ρ0− p= 2M+
(

1+
Φ(B)√−g

)
2X

∂L
∂X

, (9)

wherefrom indeed the integration constantM appears asdynamically generated
cosmological constant. Moreover the covariant energy-momentum conservation
∇ν Tµν = 0, due to the constancy of the pressure (first Eq.(9)), actually impliesboth
the conservation of the Noether currentJµ (6) as well as thegeodesic flowequation:
uν∇νuµ = 0 .

The above results lead to the following interpretation in accordance with the
standardΛ -CDM model (see e.g. [9]). The energy-momentum tensor (7) consists of
two parts:

• Dark energy part given by the second cosmological constant term in Tµν (7),
which arises due to the dynamical constraint on the scalar field Lagrangian (4)
with pDE =−2M , ρDE = 2M (cf. Eqs.(9)).

• Dark matter part given by the first term in (7) (cf. also (9)) with pDM = 0, ρDM =
ρ0 (ρ0 as in (8)). The latter describe a dust fluid with dust “particle number”
conservation (6) and flowing along geodesics.

The idea of unified description of dark energy and dark matteris the subject of
numerous earlier papers exploiting a variety of different approaches. Among them
are generalized Chaplygin gas models [5, 19], “mimetic” dark matter models [6, 7],
constant pressure ansatz models [3]etc.

3 Canonical Hamiltonian Formalism and Wheller-DeWitt
Equation

For a systematic canonical Hamiltonian treatment of gravity-matter models based
on metric-independent volume-forms we refer to [13] and specifically to the second
reference therein for the full Hamiltonian treatment of thepresent model (2). Here,
for simplicity, we will consider a reduction of (2) where thespacetime metric is
taken of the Friedmann-Lemaitre-Robinson-Walker (FLRW) class:

ds2 =−N2(t)dt2+a2(t)
[ dr2

1−Kr2 + r2(dθ 2+ sin2 θdφ2)
]
, (10)

and whereϕ and the “measure” gauge fieldB are taken to depend only ont. The
reduced action resulting from (2) reads (taking the standard form of the scalar La-
grangian):

S= 6
∫

dtNa3
[
− 1

N2

( .
a

a

)2
+

K
a2

]
+

∫
dt
(
∂tB+Na3)( 1

2N2

.
ϕ2 −V(ϕ)

)
. (11)
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The equation of motion w.r.t.B produces the dynamical constraint (reduced form of
(4)) with explicit solution forϕ(t):

.
ϕ2

= 2
(
V(ϕ)−2M

)
−→

∫ ϕ(t)

ϕ(0)

dϕ√
2
(
V(ϕ)−2M

) =±t. (12)

The hidden “dust” Noether symmetry (cf. (5) and (6)) of the reduced action (11)
now takes the form:

δε ϕ = ε
.

ϕ
N

, δεB= ε
1
N

(
∂tB+Na3) , δεa= 0 ,

d
dt

[(
Na3+ ∂tB

) .
ϕ2

N3

]
= 0 .

(13)
The canonical Hamiltonian treatment a’la Dirac of the reduced action (11) yields
the following Dirac-constrained Hamiltonian (N appearing as a Lagrange multiplier
of the first class constraint in the brackets):

Htotal = N
[
− p2

a

24a
−6Ka−πBa3+

√
2
(
V(ϕ)+πB

)
pϕ

]
, (14)

wherepa andπB are the canonically conjugated momenta ofa andB, respectively.
The quantum Wheeler-DeWitt equation corresponding to (14)is significantly

simplified upon changing variables as:

a→ ã=
4√
3

a3/2 , ϕ → ϕ̃ =

∫
dϕ√

2
(
V(ϕ)−2M

) , (15)

where from (12) we find that the new scalar field coordinateϕ̃ will have the mean-
ing of a (cosmic) time. SinceB turns out to be a cyclic variable in (14) the quantized
canonical momentum̂πB =−iδ/δB is immediately diagonalized whose eigenvalues
are denoted byπB =−2M, so thatM will have the meaning of a dynamically gen-
erated cosmological constant. Further, we notice that the quantized form of the last
term in (14), which is the Hamiltonian expression for the conserved “dust” Noether

symmetry charge (13), will simplify to
√

2
(
V(ϕ)+πB

)(
−i d

dϕ
)
= −id/dϕ̃ and is

straightforwardly diagonalized with eigenvaluesE . Accordingly, the total Wheeler-
DeWitt wave function will have the formψ(a,ϕ ,B) = ψgrav(ã)eiE ϕ̃−i 2MB (with ã
andϕ̃ as in (15)), and the Wheeler-DeWitt equation reduces to “energy” eigenvalue
Schrödinger equation for the gravitational part of the total wave function:

[
−1

2
∂ 2

∂ ã2 −
3
8

Mã2+6K
(√3

4
ã
)2/3−E

]
ψgrav(ã) = 0 (16)

In the special case of zero spacial curvatureK = 0 in the FLRW metric (10) Eq.(16)
reduces to the energy eigenvalue Schrödinger equation fortheinvertedharmonic os-
cillator [4] with negative frequency squaredω2 ≡− 3

4 M (the dynamically generated
cosmological constantM must be positive).
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In particular, the inverted oscillator was applied in [18] to study the quantum me-
chanical dynamics of the scalar field in the so called “new inflationary” scenario.
Since the energy eigenvalue spectrum of the inverted harmonic oscillator is contin-
uous (E ∈ (−∞,+∞)) and the corresponding energy eigenfunctions are not square-
integrable, its application in the context of cosmology [18] requires employment of
wave-packets instead of energy eigenfunctions.
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